Abstract

Visualization is an essential operation when assessing the risk of rare events such as coastal or river floodings. The goal is to display a few prototype events that best represent the probability law of the observed phenomenon, a task known as quantization. It becomes a challenge when data is expensive to generate and critical events are scarce, like extreme natural hazard. In the case of floodings, each event relies on an expensive-to-evaluate hydraulic simulator which takes as inputs offshore meteo-oceanic conditions and dyke breach parameters to compute the water level map. In this article, Lloyd’s algorithm, which classically serves to quantize data, is adapted to the context of rare and costly-to-observe events. Low probability is treated through importance sampling, while Functional Principal Component Analysis combined with a Gaussian process deal with the costly hydraulic simulations. The calculated prototype maps represent the probability distribution of the flooding events in a minimal expected distance sense, and each is associated to a probability mass. The method is first validated using a 2D analytical model and then applied to a real coastal flooding scenario. The two sources of error, the metamodel and the importance sampling, are evaluated to quantify the precision of the method. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.