Abstract

Tensor network as an effective computing framework for efficient processing and analysis of high-dimensional data has been successfully applied in many fields. However, the performance of traditional tensor networks still cannot match the strong fitting ability of neural networks, so some data processing algorithms based on tensor networks cannot achieve the same excellent performance as deep learning models. To further improve the learning ability of tensor network, we propose a quantized tensor neural network in this article (QTNN), which integrates the advantages of neural networks and tensor networks, namely, the powerful learning ability of neural networks and the simplicity of tensor networks. The QTNN model can be further regarded as a generalized multilayer nonlinear tensor network, which can efficiently extract low-dimensional features of the data while maintaining the original structure information. In addition, to more effectively represent the local information of data, we introduce multiple convolution layers in QTNN to extract the local features. We also develop a high-order back-propagation algorithm for training the parameters of QTNN. We conducted classification experiments on multiple representative datasets to further evaluate the performance of proposed models, and the experimental results show that QTNN is simpler and more efficient while compared to the classic deep learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.