Abstract
We demonstrate the reliable resistive switching performance of nanocrystalline-HfO2 inside amorphous-HfOx in TaN/nc-HfO2/ITO memristor structure. Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were utilized to confirm the presence of nc-HfO2 and non-stoichiometric HfOx in the switching layer. In presence of nc-HfO2, quantized conductance was controlled by the narrowing of conductive filaments in an atomic scale applying a very slow voltage sweep. Conductance change under DC voltage shows the quantized conductance states with integer and half-integer multiples of G0 (77.5 μS). Enhanced resistive switching performances with multilevel resistance states behavior were investigated under different current compliance and RESET stop voltages. Short-term plasticity and long-term potentiation, pulse number, and spike rate-dependent plasticity by controlling the magnitude and duration of the input stimulus play a critical role in modulating the post-synaptic conductivity. The combination of nc-HfO2 and amorphous-HfOx in the memristor structure provide promising scope for neuromorphic system applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.