Abstract

An adaptive tracking design strategy based on quantized state feedback is developed for uncertain nonholonomic mobile robots with unknown wheel slippage effects. All state variables and control torques are assumed to be quantized by the state and input quantizers, respectively, in a network control environment. Thus, the quantized state feedback information is only available for the tracking control design. An approximation-based adaptive controller using quantized states is recursively designed to ensure the robust adaptive tracking against unknown wheel slippage effects where the quantized-states-based adaptive mechanism is derived to compensate for unknown wheel slippage effects, system nonlinearities, and quantization errors. The boundedness of the quantization errors and estimated parameters in the closed-loop system is analyzed by presenting some theoretical lemmas. Based on these lemmas, we prove the uniform ultimate boundedness of closed-loop signals and the convergence of the trajectory tracking error in the presence of wheel slippage effects. Simulations verify the effectiveness of the resulting tracking scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call