Abstract

This paper studies the resilient control of networked systems in the presence of cyber attacks. In particular, we consider the state feedback stabilization problem for nonlinear systems when the state measurement is sent to the controller via a communication channel that only has a finite transmitting rate and is moreover subject to cyber attacks in the form of Denial-of-Service (DoS). We use a dynamic quantization method to update the quantization range of the encoder/decoder and characterize the number of bits for quantization needed to stabilize the system under a given level of DoS attacks in terms of duration and frequency. Our theoretical result shows that under DoS attacks, the required data bits to stabilize nonlinear systems by state feedback control are larger than those without DoS since the communication interruption induced by DoS makes the quantization uncertainty expand more between two successful transmissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.