Abstract

This paper is concerned with the problem of output feedback stabilization for a class of discrete-time systems with sector nonlinearities and imperfect measurements. A unified control law model is proposed to take the network-induced delay, random packet dropout and measurement quantization into consideration simultaneously. By choosing appropriate Lyapunov functional, a new stability condition, which is dependent on multiple network status, is established for the resulting closed-loop system. Based on the result, a design criterion for the static output feedback controller is formulated in the form of nonconvex matrix inequalities, and the cone complementary linearization (CCL) procedure is exploited to solve the nonconvex feasibility problem. Incidentally, a less conservative synthesis method is also developed for the state feedback stabilization purpose. Finally, two illustrative examples are provided to illustrate the effectiveness and applicability of the proposed design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.