Abstract

Massive multiuser (MU) multiple-input multiple-output (MIMO) is foreseen to be one of the key technologies in fifth-generation wireless communication systems. In this paper, we investigate the problem of downlink precoding for a narrowband massive MU-MIMO system with low-resolution digital-to-analog converters (DACs) at the base station (BS). We analyze the performance of linear precoders, such as maximal-ratio transmission and zero-forcing, subject to coarse quantization. Using Bussgang’s theorem, we derive a closed-form approximation on the rate achievable under such coarse quantization. Our results reveal that the performance attainable with infinite-resolution DACs can be approached using DACs having only 3–4 bits of resolution, depending on the number of BS antennas and the number of user equipments (UEs). For the case of 1-bit DACs, we also propose novel nonlinear precoding algorithms that significantly outperform linear precoders at the cost of an increased computational complexity. Specifically, we show that nonlinear precoding incurs only a 3 dB penalty compared with the infinite-resolution case for an uncoded bit-error rate of 10−3, in a system with 128 BS antennas that uses 1-bit DACs and serves 16 single-antenna UEs. In contrast, the penalty for linear precoders is about 8 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call