Abstract

We introduce a nonlinear frequency-dependent D+1 terminal conductance that characterizes a D-dimensional Fermi gas, generalizing the Landauer conductance in D=1. For a 2D ballistic conductor, we show that this conductance is quantized and probes the Euler characteristic of the Fermi sea. We critically address the roles of electrical contacts and Fermi liquid interactions, and we propose experiments on 2D Dirac materials, such as graphene, using a triple point contact geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call