Abstract

AbstractArtificial neural networks (ANNs) are widely used in numerous artificial intelligence‐based applications. However, the significant amount of data transferred between computing units and storage has limited the widespread deployment of ANN for the artificial intelligence of things (AIoT) and power‐constrained device applications. Therefore, among various ANN algorithms, quantized neural networks (QNNs) have garnered considerable attention because they require fewer computational resources with minimal energy consumption. Herein, an oxide‐based ternary charge‐trap transistor (CTT) that provides three discrete states and non‐volatile memory characteristics are introduced, which are desirable for QNN computing. By employing a differential pair of ternary CTTs, an artificial synaptic segregation with multilevel quantized values for QNNs is demostrated. The approach establishes a platform that combines the advantages of multiple states and robustness to noise for in‐memory computing to achieve reliable QNN performance in hardware, thereby facilitating the development of energy‐efficient AIoT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.