Abstract
Quantization noise is present in many real-time applications due to the resolution of analog-to-digital conversions. This can lead to error in policies that are learned by model-free Q-learning. A method for quantization error reduction for Q-learning algorithms is developed using the sample time and an exploration noise that is added to the control input. The method is illustrated with discrete-time policy and value iteration algorithms using both a simulated environment and a real-time physical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.