Abstract
This article investigates the cooperative output regulation problem for heterogeneous nonlinear multiagent systems subject to disturbances and quantization. The agent dynamics are modeled by the well-known Takagi-Sugeno fuzzy systems. Distributed reference generators are first devised to estimate the state of the exosystem under directed fixed and switching communication graphs, respectively. Then, distributed fuzzy cooperative controllers are designed for individual agents. Via the Lyapunov technique, sufficient conditions are obtained to guarantee the output synchronization of the resulting closed-loop multiagent system. Finally, the viability of proposed design approaches is demonstrated by an example of multiple single-link robot arms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.