Abstract

This paper discusses a quantized feedback tracker design problem of nonholonomic mobile robots with uncertain nonlinear dynamics in a network environment with state and input quantization. Quantized state feedback information of mobile robots is only used for the tacker design. Compared with existing control approaches for uncertain nonholonomic mobile robots, the primary contribution of our study is to develop quantized-states-based low-complexity tracking and stability methodologies for ensuring the predesignated performance of tracking errors. A robust tracking scheme using quantized state variables is designed without any adaptive mechanisms to compensate for nonlinear dynamic uncertainties. The boundedness of the quantization errors of the closed-loop signals is derived from a theoretical lemma. Using this lemma, the closed-loop stability is analyzed with the predesignated performance guarantee of tracking errors in the Lyapunov sense. A robot simulation verifies the resulting theoretical tracking strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call