Abstract

This paper considers distributed nonconvex op-timization for minimizing the average of local cost functions, by using local information exchange over undirected communication networks. Since the communication channels often have limited bandwidth or capacity, we first introduce a quantization rule and an encoder/decoder scheme to reduce the transmission bits. By integrating them with a distributed algorithm, we then propose a distributed quantized nonconvex optimization algorithm. Assuming the global cost function satisfies the Polyak– Łojasiewicz condition, which does not require the global cost function to be convex and the global minimizer is not necessarily unique, we show that the proposed algorithm linearly converges to a global optimal point. Moreover, a low data rate is shown to be sufficient to ensure linear convergence when the algorithm parameters are properly chosen. The theoretical results are illustrated by numerical simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call