Abstract

This paper analyzes the exponential stability of a discrete-time linear plant in feedback control over a communication network with $N$ sensor nodes, dynamic quantization, large communication delays, variable sampling intervals, and round-robin scheduling. The closed-loop system is modeled as a switched system with multiple-ordered time-varying delays and bounded disturbances. We propose a time-triggered zooming algorithm implemented at the sensors that preserves exponential stability of the closed-loop system. A direct Lyapunov approach is presented for initialization of the zoom variable. The proposed framework can be applied to the plants with polytopic type uncertainties. The effectiveness of the method is illustrated on cart-pendulum and quadruple-tank processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.