Abstract

We compute using a microscopic mean-field theory the structure and the quasiparticle excitation spectrum of a dilute, trapped Bose–Einstein condensate penetrated by an axisymmetric vortex line. The Gross–Pitaevskii equation for the condensate and the coupled Hartree–Fock–Bogoliubov–Popov equations describing the elementary excitations are solved self-consistently using finite-difference methods. We find locally stable vortex configurations at all temperatures below T c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.