Abstract

We report on inelastic neutron scattering (INS) measurements on the molecular spin ring CsFe$_8$, in which eight spin-5/2 Fe(III) ions are coupled by nearest-neighbor antiferromagnetic Heisenberg interaction. We have recorded INS data on a non-deuterated powder sample up to high energies at the time-of-flight spectrometers FOCUS at PSI and MARI at ISIS, which clearly show the excitation of spin waves in the ring. Due to the small number of spin sites, the spin-wave dispersion relation is not continuous but quantized. Furthermore, the system exhibits a gap between the ground state and the first excited state. We have modeled our data using exact diagonalization of a Heisenberg-exchange Hamiltonian together with a small single-ion anisotropy term. Due to the molecule's symmetry, only two parameters $J$ and $D$ are needed to obtain excellent agreement with the data. The results can be well described within the framework of the rotational-band model as well as antiferromagnetic spin-wave theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.