Abstract

We quantize the generalized-Witt algebra in characteristic 0 with its Lie bialgebra structures discovered by Song–Su [G. Song, Y. Su, Lie bialgebras of generalized-Witt type, arXiv: math.QA/0504168, Sci. China Ser. A 49 (4) (2006) 533–544]. Via a modulo p reduction and a modulo “ p-restrictedness” reduction process, we get 2 n − 1 families of truncated p-polynomial noncocommutative deformations of the restricted universal enveloping algebra of the Jacobson–Witt algebra W ( n ; 1 ̲ ) (for the Cartan type simple modular restricted Lie algebra of W type). They are new families of noncommutative and noncocommutative Hopf algebras of dimension p 1 + n p n in characteristic p. Our results generalize a work of Grunspan [C. Grunspan, Quantizations of the Witt algebra and of simple Lie algebras in characteristic p, J. Algebra 280 (2004) 145–161] in rank n = 1 case in characteristic 0. In the modular case, the argument for a refined version follows from the modular reduction approach (different from [C. Grunspan, Quantizations of the Witt algebra and of simple Lie algebras in characteristic p, J. Algebra 280 (2004) 145–161]) with some techniques from the modular Lie algebra theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.