Abstract
We study the change of quantization for a class of global pseudodifferential operators of infinite order in the setting of ultradifferentiable functions of Beurling type. The composition of different quantizations as well as the transpose of a quantization are also analysed, with applications to the Weyl calculus. We also compare global \(\omega \)-hypoellipticity and global \(\omega \)-regularity of these classes of pseudodifferential operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.