Abstract
Based on the exact quantization rule for the nonrelativistic Schrodinger equation, the exact quantization rule for the relativistic one-dimensional Klein-Gordon equation is suggested. Using the new quantization rule, the exact relativistic energies for exactly solvable potentials, e.g. harmonic oscillator, Morse, and Rosen-Morse II type potentials, are obtained. Consequently the new quantization rule is found to be exact for one-dimensional spinless relativistic quantum systems. Though the physical meanings of the new quantization rule have not been fully understood yet, the present formal derivation scheme may shed light on understanding relativistic quantum systems more deeply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.