Abstract

We present a fully canonical quantization scheme for the electromagnetic field in dispersive and lossy linear dielectrics. This scheme is based on a microscopic model, in which the medium is represented by a collection of interacting matter fields. We calculate the exact eigenoperators for the coupled system and express the electromagnetic field operators in terms of them. The dielectric constant of the medium is explicitly derived and is shown to satisfy the Kramers-Kronig relations. We apply these results to treat the propagation of light in dielectrics and obtain simple expressions for the electromagnetic field in the medium in terms of space-dependent creation and annihilation operators. These operators satisfy a set of equal-space commutation relations and obey spatial Langevin equations of evolution. This justifies the use of such operators in phenomenological models in quantum optics. We also obtain two interesting relationships between the group and the phase velocity in dielectrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call