Abstract

Tensor models in various forms are being studied as models of quantum gravity. Among them the canonical tensor model has a canonical pair of rank-three tensors as dynamical variables, and is a pure constraint system with first-class constraints. The Poisson algebra of the first-class constraints provides an algebraically consistent way of discretizing the Dirac algebra for general relativity. This paper successfully formulates the Wheeler-DeWitt quantization of the canonical tensor model. Formally one can obtain wave functions of the "universe" by solving the partial differential equations representing the constraints. For the simplest non-trivial case, the unique wave function is exactly and globally obtained. Although this case is far from being realistic, the wave function is physically interesting; locality is favored, and there exists a locus of configurations with features of the beginning of the universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.