Abstract

We present a theoretical model of the self-localization of the upper hybrid (UH) oscillations in plasma density depletions due to thermal nonlinearities driven by a homogeneous and monochromatic pump electric field. The Bohr-Sommerfeld condition for the trapped UH oscillations demands that the parameters of the density cavity be quantized. The depth and square of the depletion width across the magnetic field is proportional to an integer. The depth of the parabolically shaped cavity is proportional to the square of its width. The characteristic relative value of the density minimum is a few percent and the width is of the order of one meter for the pump wave amplitudes used in the ionospheric F-region experiments. We consider also the parametric decay of primary, localized UH oscillations trapped in the quantized plasma density depletions into secondary UH oscillations and lower-hybrid waves. We calculated the spectrum of the non-linear stabilized secondary UH oscillations which are also self-consistently trapped in the same density cavity. The spectrum of the UH oscillations is consistent with the observed spectrum of the downshifted (DM) and upshifted (UM) maximum in the stimulated electromagnetic emissions (SEE).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.