Abstract

Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant derivatives with respect to the Knizhnik–Zamolodchikov connection. It is a Dirac-type prequantization of the integrable system from a physical point of view. Simultaneously, it establishes a correspondence between integrable systems in question and conformal field theories. In the present paper, we focus on systems whose spectral curves possess a holomorphic involution. Examples are presented by Hitchin systems of the types Bn, $${{C}_{n}}$$ , $${{D}_{n}}$$ , and also of the type An on hyperelliptic curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.