Abstract
Quantization is one of the most popular and widely used methods of speeding up a neural network. At the moment, the standard is 8-bit uniform quantization. Nevertheless, the use of uniform low-bit quantization (4- and 6-bit quantization) has significant advantages in speed and resource requirements for inference. We present our quantization algorithm that offers advantages when using uniform low-bit quantization. It is faster than quantization-aware training from scratch and more accurate than methods aimed only at selecting thresholds and reducing noise from quantization. We also investigated quantization noise in neural networks for low-bit quantization and concluded that quantization noise is not always a good metric for quantization quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.