Abstract
Bogomolny's transfer operator method plays a significant role in the study of quantum chaos, along with other well known methods like Gutzwiller's trace formula and the dynamical zeta function, which generalize the Einstein-Brillouin-Keller quantization rule from integrable systems to chaotic systems. According to the theory, the Fredholm determinant of the transfer operator, defined on a Poincaré section of a classical physical system, provides a quantization condition to the energy spectrum of the corresponding quantum system. This study presents two factorization formulas, which relate different quantization conditions defined on different classical trajectory segments. These explicit relations answer the question of why all these classical quantization conditions determine exactly the same energy spectrum of the corresponding quantum systems. As an example, these formulas are illustrated in the equilateral triangular billiard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.