Abstract

The network scale-up method is a promising technique that uses sampled social network data to estimate the sizes of epidemiologically important hidden populations, such as sex workers and people who inject illicit drugs. Although previous scale-up research has focused exclusively on networks of acquaintances, we show that the type of personal network about which survey respondents are asked to report is a potentially crucial parameter that researchers are free to vary. This generalization leads to a method that is more flexible and potentially more accurate. In 2011, we conducted a large, nationally representative survey experiment in Rwanda that randomized respondents to report about one of 2 different personal networks. Our results showed that asking respondents for less information can, somewhat surprisingly, produce more accurate size estimates. We also estimated the sizes of 4 key populations at risk for human immunodeficiency virus infection in Rwanda. Our estimates were higher than earlier estimates from Rwanda but lower than international benchmarks. Finally, in this article we develop a new sensitivity analysis framework and use it to assess the possible biases in our estimates. Our design can be customized and extended for other settings, enabling researchers to continue to improve the network scale-up method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.