Abstract
Transportation network faces the possibility of sudden events that disrupts its normal operation, particularly in earthquake prone areas. As the backbone of critical infrastructure lifelines, it is therefore essential that transportation network retains its resilience after disastrous earthquakes to ensure efficient evacuation of at-risk population to safe zones and timely dispatch of emergency response resources to the impacted area. However, predicting transportation network resilience and planning for emergency situations is an extremely challenging problem, particularly under earthquake uncertainty and risks. This paper aims to propose a model to quantify seismic resilience of transportation network. The focus of this model is on generalizing quantitative resilience measures of transportation network response to earthquake risks rather than specifying characteristics of the corridor selections that lead to patterns of the response of each specific road segment. In the model, traffic capacity is selected as resilience measure and three capacity reduction indices are introduced to address the uncertainty and risks from impacted roads, buildings and bridges, respectively. Finally, the proposed models were validated by the 2008 Sichuan Earthquake data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.