Abstract
Summary Hydrate-associated problems pose a key concern to the oil and gas industry when moving toward deeper-offshore reservoir development. A better understanding of hydrate-blockage-development behavior can help flow-assurance engineers develop more-economical and environmentally friendly hydrate-management strategies for deepwater operations. In this work, a model is proposed to describe the hydrate-blockage-formation behavior in testing tubing during deepwater-gas-well testing. The reliability of the model is verified with drillstem-testing (DST) data. Case studies are performed with the proposed model. They indicate that hydrates form and deposit on the tubing walls, creating a continuously growing hydrate layer, which narrows the tubing, increases the pressure drop, and finally results in conduit blockage. The hydrate-layer thickness is nonuniform. At some places, the hydrate layer grows more quickly, and this is the high-blockage-risk region (HBRR). The HBRR is not located where the lowest ambient temperature is encountered, but rather at the position where maximum subcooling of the produced gas is presented. As an example case—a deepwater gas well with a water depth of 1565 m and a gas-production rate of 45 × 104 m3/d—the hydrate blockage first forms at the depth of 150 m. In the section with a depth from 50 to 350 m, hydrates deposit more rapidly and this is the HBRR. As the water depth increases and/or the gas-flow rate decreases, the HBRR becomes deeper. Inhibitors can delay the occurrence of hydrate blockage. The hydrate problems can be handled with a smaller amount of inhibitors during deepwater well-testing operations. This work provides new insights for engineers to develop a new-generation flow-assurance technique to handle hydrate-associated problems during deepwater operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.