Abstract

The disintegration of nanoparticles and drug release are important and imperative for nanoparticle formulations of therapeutic agents. However, quantitatively monitoring the drug release of nanomedicines is a major challenge. In this work, boron-dipyrromethene (BDP) was applied as a model drug to study the disassembly of nanoparticles and drug release. BDP dimers with disulfide and ester bonds were synthesized, and their nanoparticles were made. The accurate analysis of bond breaking in BDP nanoparticles could not be realized by using confocal laser scanning microscopy. Hence, the possible products after bond cleavage were quantified by using liquid chromatography tandem mass spectrometry (LC-MS/MS). BDP nanoparticles could be endocytosed into cancer cells, and the disulfide bonds and ester bonds were broken to promote the disassociation of nanoparticles and BDP release. Then, near-infrared BDP nanoparticles were investigated in live mice by near-infrared fluorescence imaging and LC-MS/MS. The release of BDP was low (<10%) and BDP maintained the original dimer structure in vivo, which showed that the bond breaking for BDP nanoparticles was difficult in vivo. These results could help us understand the breaking law of disulfide bonds and ester bonds in nanoparticles and are beneficial for developing practical new drug formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.