Abstract
Genetic diversity within populations is an important component of adaptive evolution, and recent research has demonstrated that genetic variation within plant populations can have important ecological effects. In this study, we investigate quantitative-genetic variation in several traits within a quaking aspen ( Populus tremuloides Michx.) population. A common garden experiment was planted with replicates of 13 aspen genotypes collected from wet and dry sites within a population in southern Utah, USA. Ten growth, leaf, physiological, and structural traits were measured. There were significant, heritable phenotypic differences among genotypes in every measured trait and differences in 4 of the 10 traits among genotypes originating from wet and dry collection sites. The data were compared with other published studies, showing that aspen heritability (H2) estimates and coefficients of genetic variation (CVG) were comparable or higher than other Populus species and hybrid F1 Populus genotypes, indicating a large amount of quantitative-genetic variation in aspen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.