Abstract

Slug flow is a commonly encountered flow regime in microchannels due to the influence of surface tension and vapor confinement at small length scales. Few experimental studies have considered diabatic vapor-liquid slug flow, owing to difficulties in generating a well-controlled and repeatable slug flow regime; generation of vapor by wall heating typically leads to large, stochastic variations in the vapor bubble characteristics. To facilitate the study of flow behavior and vapor-liquid interfaces under precisely controlled conditions, a diabatic, one-component, two-phase microchannel flow was generated by separately injecting HFE-7100 vapor and liquid into a T-junction. Injection at independently controllable liquid and vapor flow rates allows the creation of vapor-liquid slug flow patterns in a downstream borosilicate microchannel of circular cross-section with a 500 μm inside diameter. The outside surface of the microchannel was coated with a 100 nm-thick layer of indium tin oxide (ITO) to generate a uniform wall heat flux via Joule heating while allowing full optical access for flow visualization. The growth of individual vapor bubbles was quantitatively visualized at different imposed heat fluxes, in terms of the percentage change in vapor bubble length along the heated microchannel. The results demonstrate the ability of the T-junction to generate diabatic, one-component, two-phase microchannel slug flow that is suitable for generating results for the validation of flow boiling models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.