Abstract

We propose a tomographic method using X-ray Talbot interferometry for mapping three-dimensional distribution of parameters characterizing microstructures, which are typically of the order of μm in size and cannot be resolved by the imaging system, in a sample. In the method we use reduction in fringe visibility, which is due to such unresolvable microstructures, of moiré images obtained in the interferometry. We applied this method to a sample of melamine sponge containing chloroprene rubber. We performed tomographies at several Talbot orders and obtained the dependencies of the reconstructed values on the Talbot order for voxels. The parameters obtained by the least-squares fitting to the dependencies were consistent with those previously obtained from projection images for each material. Our approach provides three-dimensional structural information on unresolvable microstructures in real space, which is only accessible through the ultra-small-angle X-ray scattering (USAXS) in reciprocal space, and is expected to be broadly applicable to material, biological, and medical sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.