Abstract

Design and control of computer systems that operate in uncertain, competitive or adversarial, environments can be facilitated by formal modelling and analysis. In this paper, we focus on analysis of complex computer systems modelled as turn-based 212-player games, or stochastic games for short, that are able to express both stochastic and non-stochastic uncertainties. We offer a systematic overview of the body of knowledge and algorithmic techniques for verification and strategy synthesis for stochastic games with respect to a broad class of quantitative properties expressible in temporal logic. These include probabilistic linear-time properties, expected total, discounted and average reward properties, and their branching-time extensions and multi-objective combinations. To demonstrate applicability of the framework as well as its practical implementation in a tool called PRISM-games, we describe several case studies that rely on analysis of stochastic games, from areas such as robotics, and networked and distributed systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.