Abstract

In recent years, various flexible structures which undergo large deformations are often applied to deployment mechanisms of space applications due to the requirements for a large structure. It is necessary to grasp their complex behaviors before the launch to escape failures as much as possible. The dynamics due to the large deformations and the overall motions are especially quite important. To overcome the difficulties of ground check about their dynamics, a powerful numerical analysis method is required strongly. In the past decade Absolute Nodal Coordinate Formulation (ANCF) method has been developed for the flexible multibody systems with large deformation and various applications have been applied to ANCF for practical use. However, there are not enough researches which validate the method by the comparison with experimental data. Especially, there are few study which conducts a quantitative validation of ANCF about overall motion with large deformation. In this paper, dynamic stiffening is focused on as one of the important overall motion. A mathematical model of two dimensional simple flexible beam is constructed based on ANCF. To simulate the dynamic stiffening by the derived model, the flexible beam is rotated horizontally in a certain angular velocity and the time history of the deformation is analyzed. Then, the results of the numerical analysis are compared with the data of corresponding experiments quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.