Abstract

The radio-frequency ultrasound backscattered data from tissue is rich in information and can provide important information about tissue state that is not obtained through traditional B-mode imaging. To parameterize the ultrasound backscattered data, the frequency spectrum, i.e., the backscatter coefficient, can be modeled using scattering theory. Models of tissue scattering are often represented by simple discrete geometric shapes, i.e., discrete scattering model. The discrete scattering model provides important insights into how the spatial arrangement of scatterers contributes to the signal spectrum. Another competing model is the continuum scattering model. In this model, the tissue is described as a continuous tissue construct with scatterers that have a continuous impedance change from the background. The continuous model provides a form factor description of the underlying tissue scatterers such as an effective scatterer diameter. In this chapter, we will compare and contrast the two underlying tissue scattering models and how they provide insights into ultrasonic scattering from soft tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.