Abstract

Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel with the aim of minimizing common error sources like the position and penetration angle of the ultrasound beam, as well as the soft tissue temperature. To achieve these objectives, we used a receiver array, mechanics to adjust the beam direction and a foot temperature sensor. In a group of 60 volunteers, short-term precision was evaluated for the foot ultrasound scanner and a commercial device (Achilles Insight, GE Medical, Fairfield, CT, USA‎). In a subgroup of 20 subjects, mid-term precision (1-mo follow-up) was obtained. Compared with measurement of the speed of sound with the Achilles Insight, measurement with the foot ultrasound scanner reduced precision errors by half (p < 0.05). The study indicates that improvement of the precision of calcaneal quantitative ultrasound measurements is feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call