Abstract

Background and objectiveUltrasound has emerged as a promising modality for detecting middle ear effusion (MEE) in pediatric patients. Among different ultrasound techniques, ultrasound mastoid measurement was proposed to allow noninvasive detection of MEE by estimating the Nakagami parameters of backscattered signals to describe the echo amplitude distribution. This study further developed the multiregional-weighted Nakagami parameter (MNP) of the mastoid as a new ultrasound signature for assessing effusion severity and fluid properties in pediatric patients with MEE. MethodsA total of 197 pediatric patients (n = 133 for the training group; n = 64 for the testing group) underwent multiregional backscattering measurements of the mastoid for estimating MNP values. MEE, the severity of effusion (mild to moderate vs. severe), and the fluid properties (serous and mucous) were confirmed through otoscopy, tympanometry, and grommet surgery and were compared with the ultrasound findings. The diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC). ResultsThe training dataset revealed significant differences in MNPs between the control and MEE groups, between mild to moderate and severe MEE, and between serous and mucous effusion were observed (p < 0.05). As with the conventional Nakagami parameter, the MNP could be used to detect MEE (AUROC: 0.87; sensitivity: 90.16%; specificity: 75.35%). The MNP could further identify effusion severity (AUROC: 0.88; sensitivity: 73.33%; specificity: 86.87%) and revealed the possibility of characterizing fluid properties (AUROC: 0.68; sensitivity: 62.50%; specificity: 70.00%). The testing results demonstrated that the MNP method enabled MEE detection (AUROC = 0.88, accuracy = 88.28%, sensitivity = 92.59%, specificity = 84.21%), was effective in assessing MEE severity (AUROC = 0.83, accuracy = 77.78%, sensitivity = 66.67%, specificity = 83.33%), and showed potential for characterizing fluid properties of effusion (AUROC = 0.70, accuracy = 72.22%, sensitivity = 62.50%, specificity = 80.00%). ConclusionsTransmastoid ultrasound combined with the MNP not only leverages the strengths of the conventional Nakagami parameter for MEE diagnosis but also provides a means to assess MEE severity and effusion properties in pediatric patients, thereby offering a comprehensive approach to noninvasive MEE evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call