Abstract

To investigate the dynamic fluctuation of terpenoid relevant transcriptomics in transgenic ARTEMISIA ANNUA plants that express the genomic integrated antisense squalene synthase gene ( ASSS), we have quantified the transcript levels of the sterol anabolic SS gene as well as artemisinin biogenetic amorphadiene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 reductase (CPR) genes by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). The SS mRNA level in transgenic plants sharply droped to 7.4 % - 55.3 % (i. e., 44.7 - 92.6 % reduction as the wild-type control), strongly implying that the expression of endogenous SS gene is significantly suppressed by the exogenous ASSS gene. In a synchronous fashion, ADS, CYP71AV1 and CPR mRNA levels elevated with the decline of SS mRNA level in transgenic plants, and the maximal ADS, CYP71AV1 and CPR mRNA levels in transgenic plants were 3.0-, 4.4- and 2.5-fold, respectively, higher than those in the control. Without a lethal effect but with a distinguishable impact on the organogenesis and morphology of transgenic plants, the down-regulation of SS gene has also led to the coordinated overexpression of ADS, CYP71AV1 and CPR genes together with the overproduction of artemisinin although no fully perfect correlation among the available experimental data has been shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.