Abstract

BackgroundAdrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes.ResultsSingle QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8.ConclusionsThe extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear.

Highlights

  • Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone

  • The results of this study will aid in understanding function of of the X-zone and of the human fetal zone

  • Comparison of X-zone morphology between B6 and B6.Cg-Ay, and DDD and DDD.Cg-Ay makes it possible to reveal the effect of the Ay allele

Read more

Summary

Introduction

Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. A quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2 Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. With regard to strain differences, inbred mouse strains can be classified into two categories based on the incidence and size of X-zones and the timing of X-zone vacuolation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.