Abstract

Combined analysis of data from two or more resource populations can improve the power and accuracy of QTL mapping and allow some cross-validation of results. In this study, we performed a genome-wide scan using combined data from two F(2) populations derived from a cross between Large White and Chinese Meishan pigs. A total of 739 pigs were included in the analysis. In total 187 markers were genotyped in the two populations, including 115 markers genotyped in both populations, and these markers covered 2282 cM of the pig genome with an average of 13.58 cM between markers. Seven traits (teat number, birth weight, weaning weight, test-end weight, fat depth at shoulder, fat depth at mid back and fat depth at loin) were analysed for both individual populations and the combined population. There were 9 (2, 10), 1 (4, 4) and 14 (5, 18) QTL that achieved 1% genome-wide, 5% genome-wide and suggestive significance levels respectively in population 1 (population 2, combined population). Additive effects of QTL detected in the two populations at all significance levels were largely consistent suggesting that the QTL represent real genetic effects, but this was not the case for dominance or imprinting effects. There were also a number of significant interactions between detected QTL effects and population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.