Abstract

Cotton plant architecture is an important characteristic influencing the suitability of specific cotton varieties in cultivation, fiber yield and quality. However, complex multigenic relationships and substantial genotype–environment interaction underlie plant architecture, and will hinder the efficient improvement of these traits in conventional cotton breeding programs. An enhanced understanding of the molecular-genetic regulation of plant morphological developmental can aid in the modification of agronomically relevant traits. In this study, an interspecific Gossypium hirsutum and Gossypium barbadense BC 1 population was used to identify QTL associated with plant architectural traits. Twenty-six single QTL were identified for seven plant architecture traits. The phenotypic variation explained by an individual QTL ranged from 9.56% to 44.57%. In addition, 11 epistatic QTL for fruit branch angle (FBA), plant height (PH), main-stem leaf size (MLS), and fruiting branch internode length (FBI) explained 2.28–15.34% of the phenotypic variation in these traits. The majority of the interactions (60%) occurred between markers linked to QTL influencing the same traits. The QTL detected in this study are expected to be valuable in future breeding programs to develop cultivars exhibiting desirable cotton architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.