Abstract

BackgroundBlood–brain barrier (BBB) disruption is an integral feature of numerous neurological disorders. However, there is a relative lack of knowledge regarding the underlying molecular mechanisms of immune-mediated BBB disruption. We have previously shown that CD8 T cells and perforin play critical roles in initiating altered permeability of the BBB in the peptide-induced fatal syndrome (PIFS) model developed by our laboratory. Additionally, despite having indistinguishable CD8 T cell responses, C57BL/6J (B6) mice are highly susceptible to PIFS, exhibiting functional motor deficits, increased astrocyte activation, and severe CNS vascular permeability, while 129S1/SvImJ (129S1) mice remain resistant. Therefore, to investigate the potential role of genetic factors, we performed a comprehensive genetic analysis of (B6 x 129S1) F2 progeny to define quantitative trait loci (QTL) linked to the phenotypic characteristics stated above that mediate CD8 T cell-initiated BBB disruption.ResultsUsing single nucleotide polymorphism (SNP) markers and a 95% confidence interval, we identified one QTL (PIFS1) on chromosome 12 linked to deficits in motor function (SNP markers rs6292954, rs13481303, rs3655057, and rs13481324, LOD score = 3.3). In addition we identified a second QTL (PIFS2) on chromosome 17 linked to changes in CNS vascular permeability (SNP markers rs6196216 and rs3672065, LOD score = 3.7).ConclusionsThe QTL critical intervals discovered have allowed for compilation of a list of candidate genes implicated in regulating functional deficit and CNS vascular permeability. These genes encode for factors that may be potential targets for therapeutic approaches to treat disorders characterized by CD8 T cell-mediated BBB disruption.

Highlights

  • Blood–brain barrier (BBB) disruption is an integral feature of numerous neurological disorders

  • Despite having identical MHC class I molecules, epitopespecific CNS-infiltrating CD8 T cells, and equivalent cytotoxic T lymphocyte (CTL) perforin-mediated killing, BBB disruption. C57BL/6J (B6) mice are highly susceptible to peptide-induced fatal syndrome (PIFS), whereas 129S1 mice remain resistant

  • This difference in susceptibility was illustrated by higher glial fibrillary acidic protein (GFAP) expression, increased CNS vascular permeability, and severe functional motor deficit in VP2121-130-treated B6 mice when compared to VP2121-130-treated 129S1 mice

Read more

Summary

Introduction

Blood–brain barrier (BBB) disruption is an integral feature of numerous neurological disorders. Despite having indistinguishable CD8 T cell responses, C57BL/6J (B6) mice are highly susceptible to PIFS, exhibiting functional motor deficits, increased astrocyte activation, and severe CNS vascular permeability, while 129S1/SvImJ (129S1) mice remain resistant. Despite having identical MHC class I molecules, epitopespecific CNS-infiltrating CD8 T cells, and equivalent cytotoxic T lymphocyte (CTL) perforin-mediated killing, B6 mice are highly susceptible to PIFS, whereas 129S1 mice remain resistant. This difference in susceptibility was illustrated by higher glial fibrillary acidic protein (GFAP) expression, increased CNS vascular permeability, and severe functional motor deficit in VP2121-130-treated B6 mice when compared to VP2121-130-treated 129S1 mice. Through an initial microsatellite analysis, we have determined that the PIFS phenotype is not mediated through a single gene, but rather is likely to be a complex condition [15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.