Abstract
Fruit rot is a fungal disease complex that threatens cranberry yields in North American growing operations. Management of fruit rot is especially difficult because of the diversity of the infecting fungal species, and although infections take place early in the season, the pathogens usually remain latent in the ovary until the fruit ripen. Control methods heavily rely on fungicide applications, a practice that may be limited in viability long term. Breeding for fruit rot resistance (FRR) is essential for sustainable production. It is likely that field resistance is multifaceted and involves a myriad of traits that fortify cranberry plants against the biotic and abiotic stresses contributing to fruit rot. In this study, we identified quantitative trait loci (QTL) for FRR in a segregating population. Interestingly, a QTL associated with resistance was found to overlap with one associated with fruit epicuticular wax (ECW). A single-nucleotide polymorphism genotyping assay successfully identified accessions that exhibit the desired phenotypes (i.e., less rot and more ECW), thus making it a useful tool for marker-assisted selection. Candidate genes that may contribute to FRR and ECW were also identified. This work will expedite breeding for improved cranberry fruit quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.