Abstract

The development and application of quantitative systems pharmacology models in neuroscience have been modest relative to other fields, such as oncology and immunology, which may reflect the complexity of the brain. Technological and methodological advancements have enhanced the quantitative understanding of brain physiology and pathophysiology and the effects of pharmacological interventions. To maximize the knowledge gained from these novel data types, pharmacometrics modelers may need to expand their toolbox to include additional mathematical and statistical frameworks. A session was held at the 10th annual American Conference on Pharmacometrics (ACoP10) to highlight several recent advancements in quantitative and systems neuroscience. In this mini‐review, we provide a brief overview of technological and methodological advancements in the neuroscience therapeutic area that were discussed during the session and how these can be leveraged with quantitative systems pharmacology modeling to enhance our understanding of neurological diseases. Microphysiological systems using human induced pluripotent stem cells (IPSCs), digital biomarkers, and large‐scale imaging offer more clinically relevant experimental datasets, enhanced granularity, and a plethora of data to potentially improve the preclinical‐to‐clinical translation of therapeutics. Network neuroscience methodologies combined with quantitative systems models of neurodegenerative disease could help bridge the gap between cellular and molecular alterations and clinical end points through the integration of information on neural connectomics. Additional topics, such as the neuroimmune system, microbiome, single‐cell transcriptomic technologies, and digital device biomarkers, are discussed in brief.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.