Abstract

The dysregulation of brain iron homeostasis is closely relevant to a multitude of chronic neurological disorders. This study employed quantitative susceptibility mapping (QSM) to detect and compare whole-brain iron content between childhood epilepsy with centrotemporal spikes (CECTS) children and typically developing children. 32 children with CECTS and 25 age- and gender-matched healthy children were enrolled. All participants were imaged with 3.0-T MRI to acquire the structural and susceptibility-weighted data. The susceptibility-weighted data were processed using STISuite toolbox to obtain QSM. The magnetic susceptibility difference between the two groups was compared using voxel-wise and region of interest methods. Multivariable linear regression, controlling for age, were employed to investigate the associations between the brain magnetic susceptibility and age at onset. Lower magnetic susceptibility was mainly observed in sensory- and motor-related brain regions in children with CECTS, including bilateral middle frontal gyrus, supplementary motor area, midcingulate cortex, paracentral lobule and precentral gyrus, the magnetic susceptibility of right paracentral lobule, right precuneus and left supplementary motor area were found to have positive correlation with the age at onset. This study suggests that the potential iron deficiency in certain brain regions is associated with CECTS, which might be helpful for further illumination of potential pathogenesis mechanism of CECTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call