Abstract

To investigate the normal-appearing white matter (NAWM) susceptibility in a cohort of newly diagnosed multiple sclerosis (MS) patients and to evaluate possible correlations between NAWM susceptibility and disability progression. Fifty-nine patients with a diagnosis of MS (n = 53) or clinically isolated syndrome (CIS) (n = 6) were recruited and followed up. All participants underwent neurological examination, blood sampling for serum neurofilament light chain (sNfL) level assessment, lumbar puncture for the quantification of cerebrospinal fluid (CSF) β-amyloid1-42 (Aβ) levels, and brain MRI. T2-weighted scans were used to quantify white matter (WM) lesion loads. For each scan, we derived the NAWM volume fraction and the WM lesion volume fraction. Quantitative susceptibility mapping (QSM) of the NAWM was calculated using the susceptibility tensor imaging (STI) suite. Susceptibility maps were computed with the STAR algorithm. Primary progressive patients (n = 9) showed a higher mean susceptibility value in the NAWM than relapsing-remitting (n = 44) and CIS (n = 6) (p = 0.01 and p = 0.02). Patients with a higher susceptibility in the NAWM showed increased sNfL concentration (ρ = 0.38, p = 0.004) and lower CSF Aβ levels (ρ = -0.34, p = 0.009). Mean NAWM susceptibility turned out to be a predictor of the expanded disability status scale (EDSS) worsening at follow-up (β = 0.41, t = 2.66, p = 0.01) and of the MS severity scale (MSSS) (β = 0.38, t = 2.43, p = 0.019). QSM in the NAWM seems to predict the EDSS increment over time. This finding might provide evidence on the role of QSM in identifying patients with an increased risk of early disability progression. • NAWM-QSM is higher in PPMS patients than in RRMS. • NAWM-QSM seems to be a predictor of EDSS worsening over time. • Patients with higher NAWM-QSM show increased sNfL concentration and lower CSF Aβ levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call