Abstract

A sandwich structured substrate was designed for quantitative molecular detection using surface enhanced Raman scattering (SERS), in which the probe molecule was sandwiched between silver nanoparticles (SNPs) and silver nanoarrays. The SNPs was prepared using Lee–Meisel method, and the silver nanoarrays was fabricated on porous anodic aluminum oxide (AAO) using electrodepositing method. The SERS studies show that the sandwich structured substrate exhibits good stability and reproducibility, and the detection sensitivity of Rhodamine 6G (R6G) and Melamine can respectively reach up to 10 −19 M and 10 −9 M, which is improved greatly as compared to other SERS substrates. The improved SERS sensitivity is closely associated with the stronger electromagnetic field enhancement, which stems from localized surface plasmon (LSP) coupling between the two silver nanostructures. Furthermore, the SERS intensity increased almost linearly as the mother concentration increased, which indicates that such a sandwich structure may be used as a good SERS substrate for quantitative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.