Abstract

The Borowski Theory of Gravitation (BTG) indicates that movements of mass such as planets through space are determined by differential pressures from dark matter. One of the consequences of the final epoch is that there would be no matter but only distance. Quantitative solutions indicate that the tensor to set universal average dark matter pressure equal to G, the gravitational constant, would require that the terminal length would be ~2.2∙1069 m or effectively identical to current estimates of energy equivalence of the universal mass. For the earth’s orbit the force from the dark pressure is the same order of magnitude as the force associated with the product of the planet’s mass and background free oscillations whose origins are still ambiguous. The convergences of solutions suggest that the BTG may reveal alternative interpretations and mechanisms for the role of gravitation in planetary motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.