Abstract

Super-resolution microscopy is an enabling technology that allows biologists to visualize cellular structures at nanometer length scales using far-field optics. To break the diffraction barrier, it is necessary to leverage the distinct molecular states of fluorescent probes. At the same time, the existence of these different molecular states and the photophysical properties of the fluorescent probes can complicate data quantification and interpretation. Here, we review the pitfalls in super-resolution data analysis that must be avoided for proper interpretation of images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call