Abstract

Prulifloxacin, a broad-spectrum quinolone antibiotic, exhibits three distinct crystal forms, each with different bioavailability and therapeutic properties. It is imperative to assess and control the proportion of each crystal form during the production of raw materials and preparations. Therefore, it is necessary to establish an analytical method that can determine the content of each crystal form in the ternary polycrystalline mixtures. In this study, prulifloxacin crystal forms were analyzed and quantitatively measured using Raman spectroscopy. First, three pure crystal forms of prulifloxacin were prepared under different crystallization conditions and mixed into ternary mixtures at the designed proportions. Subsequently, the ternary mixed crystal samples were analyzed using a Raman microscope.Then run a partial least squares regression analysis to establish a PLS quantitative model using the average spectra data, and a non-negative least squares analysis to establish an area percentage quantitative model using Raman imaging data.The method validation results showed that the two models successfully predicted the proportion of each crystal form within the prulifloxacin polycrystalline mixtures, with a prediction accuracy of less than ± 10 %. Raman spectroscopy was thus established as an effective method for crystal form analysis and quantitative measurement of prulifloxacin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.